‘Retrofitting’ your PhD: when you get your data before your theory

I gave a workshop recently to two different groups of students at the same university on building a theoretical framework for a PhD. The two groups of students comprised scholars at very different points in their PhDs, some just starting to think about theory, some sitting with data and trying to get the theory to talk to the data, and others trying to rethink the theory after having analysed their data. One interesting question emerged: what if you have your data before you really have a theoretical framework in place? How do you build a theoretical framework in that case?

I started my PhD with theory, and spent a year working out what my ‘gaze’ was. I believed, and was told, that this was the best way to go about it: to get my gaze and then get my data. In my field, and with my study, this really seemed like the only way to progress. All I had starting out was my own anecdotal issues, problems and questions I wanted answers to, and I needed to try and understand not just what the rest of my field had already done to try and find answers, but what I could do to find my own answers. I needed to have a sense of what kinds of research were possible and what these might entail. I had no idea what data to generate or what to do with it, and could not have started there with my PhD. So I moved from reading the field, to reading the theory, to building an internal language of description, to generating data, to organising and analysing it using the theory to guide me, to reaching conclusions that spoke back to the theory and the field – a closed circle if you will. This seems, to me certainly, the most logical way to do a PhD.

But, I have colleagues and friends who haven’t necessarily followed this path. In their line of work, they have had opportunities to amass small mountains of data: interview transcripts, documents, observation field notes, student essays, exam transcripts and so forth. They have gathered and collected all of these data, and have then tried to find a PhD in the midst of all of it. They are, in other words, trying to ‘retrofit’ a PhD by looking to the data to suggest a question or questions and through these, a path towards a theoryology.

Many people start their doctoral study in my field – education studies – to find answers to very practical or practice-based questions. Like: ‘What kinds of teaching practice would better enable students to learn cumulatively?’ (a version of my own research question) Or: ‘What kinds of feedback practices better enable students to grow as writers in the Sciences?’ And so on. If you are working as a lecturer, facilitator, tutor, writing-respondent, staff advisor or similar, you may have many opportunities to generate or gather data: workshop inputs, feedback questionnaires, your own field notes and reports, student essays and exam submissions, and so on. After a while, you may look at this mountain of data and wonder: ‘Could there be a thesis in all of this? Maybe I need to start thinking about making some order and sense out of all of this’. You may then register for a PhD, searching for and finding a research question in your data, and then begin the process of retrofitting your PhD with substantive theory and a theoryology to help you work back again towards the data so as to tell its story in a coherent way that adds something to your field’s understanding or knowledge of the issues you are concerned with.

The question that emerged in these workshops was: ‘Can you create a theoretical framework if you have worked so far like this, and if so, how?’ I think the answer must be ‘yes’, but the how is the challenging thing. How do you ask your data the right kinds of questions? A good starting point might be to map out your data in some kind of order. Create mind-maps or visual pictures of what data you have and what interests you in that data. Do a basic thematic analysis – what keeps coming up or emerging for you that is a ‘conceptual itch’ or something you really feel you want or need to answer or explore further? Follow this ‘itch’ – can you formulate a question that could be honed into a research question? Once you have a basic research question, you can then move towards reading: what research is being or has been done on this one issue that you have pulled from your data? What methodologies and what theory are the authors doing this research using? What tools have they found helpful? Then, much as you would in a more ‘traditional’ way, you can begin to move from more substantive research and theory towards an ontological or more meta-theoretical level that will enable you to build a holding structure and fit lenses to your theory glasses, such that you have a way of looking at your data and questions that will enable you to see possible answers.

Then you can go back to your data, with a fresh pair of eyes using their theory glasses and re-look at your data, finding perhaps things you expect to see, but also hopefully being surprised and seeing new things that you missed or overlooked before you had the additional dimension or gaze offered by your theoretical or conceptual framing. But working in this ‘retrofitted’ way is potentially tricky: if you have been looking and looking at this data without a firm(ish) theoretically-informed or shaped gaze, can you be surprised by it? Can you approach your research with the curious, tentative ‘I don’t know the answers, but let’s explore this issue to find out’ kind of attitude that a PhD requires? I think, if you do decide to do or are doing a PhD in what I would regard as a middle-to-front sort of way, with data at the middle, then you need to be aware of your own already-established ideas of what is or isn’t ‘real’ or ‘true’, and your own biases informed by your own experience and immersion in your field and your data. You may need to work harder at pulling yourself back, so that you can look at your data afresh, and consider things you may be been blind to, or overlooked before; so that you can create a useful and illuminating conversation between your data and your theory that contributes something to your field.

Retrofitting a PhD is not impossible – there is usually more than one path to take in reaching a goal (especially if you are a social scientist!) – but I would posit that this way has challenges that need to be carefully considered, not least in terms of the extra time the PhD may take, and the additional need to create critical distance from data and ‘findings’ you may already be very attached to.


2 thoughts on “‘Retrofitting’ your PhD: when you get your data before your theory

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s